While diffusion MRI tractography has provided important insights on the human brain connectome, fibre-tracking through heterogeneous voxels has proven to be a challenging endeavour. Recently, we devised MRI acquisition- and processing methods to resolve sub-voxel heterogeneity with nonparametric 5D relaxation-diffusion distributions where contributions from distinct tissues are separated while circumventing the use of limiting assumptions. The separation between tissue-signals provides a clean mapping of nerve fibres that can then be used as an input in fibre-tracking algorithms. Additionally, values of relaxation rates and diffusivities are estimated for each distinct fibre bundle, potentially giving tract-specific information on chemical composition and microstructure.
This abstract and the presentation materials are available to members only; a login is required.