Uran Ferizi1, Ignacio Rossi2, Christian Glaser3, Jenny Bencardino1, and Jose Raya1
1Department of Radiology, New York University School of Medicine, New York, NY, United States, 2Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, United States, 3Radiologisches Zentrum München-Pasing, Munich, Germany
The current DTI model has shown promise in capturing the early trends of change in cartilage. However, the model is very sensitive to the noise in the signal, hence blurring the contrast in the the anisotropy maps. Here we propose a simplification of the 6-parameter model to a 4-parameter one, called the "Zeppelin". The biophysical description that the Zeppelin makes remains the same and, additionally, provides fits that are more stable and provide better constrast. We also propose a new and simple 4-parameter multicompartment model (which is already known in neuroimaging). This provides an even more robust model fitting to the data, producing parameters that are analogous to those of Zeppelin, and promising more specificity to the early changes that occur in cartilage.