Diffusion MRI is a powerful approach to quantify brain architecture. However, diffusion scalar maps derived from raw data are sensitive to the data quality and processing choices. Many quality control algorithms exist that perform a robust check of raw diffusion data, there is a lack of QCs for inspecting the derived maps from different diffusion approaches. We present a novel QC algorithm for processed scalar maps using mean skeleton values (in the context of tract-based spatial statistics) and structural similarity metric based on the scalar maps. The algorithm builds on clustering of scalar diffusion metrics from 18609 UK Biobank individuals.
This abstract and the presentation materials are available to members only; a login is required.