Purpose: To describe an integrated, semi-automated image processing pipeline for multispectral qMRI, termed qVision. Methods: Dual-clustering and MS-qMRI python algorithms for the Tri-TSE pulse sequence are automatically calculated and harmonized across a dataset of neuroimaging data from adolescents born extremely preterm. Results: Automated processing is completed in 30 minutes per subject, resulting in high-resolution mappings of T1, T2, PD, and spatial entropy, as well as heavily R1-weighted images of white matter texture via Synthetic-MRI. Conclusion: qVision has been validated on a large-scale, multi-site, and multi-vendor dataset of neuroimaging data, capable of producing a broad spectrum of MS-qMRI outcomes.
This abstract and the presentation materials are available to members only; a login is required.