Existing CEST methodologies suffer from low specificity in distinguishing various exchange species in tissue. To further utilize dependence of CEST spectra on saturation length (tsat), power (B1) as well as frequency, we setup a fast acquisition of Parametric VARied Saturation (PaVARS) in a 3T clinical scanner, by separating the seconds-long saturation preparation to 5-8 modules each followed by a low flip-angle readout. On phantoms of three metabolites and human brain, PaVARS enabled fast acquisition of multiple Zspectra, each weighted with different saturation length and power. PaVARS could be a ready-to-use, informative acquisition methods for better differentiation of endogeneous brain metabolites.
This abstract and the presentation materials are available to members only; a login is required.