We aimed to identify whether variations in grey and white matter brain structure during early childhood predict future pre-reading skills. We examined anatomical (T1-weighted) and diffusion tensor (DTI) images from 35 children at 3.5years(±3months). Children were assessed for their pre-reading abilities using NEPSY-II subtests one year later (4.5years±3months). A data-driven linked independent component analysis was used to identify components of DTI and morphometry measures with shared variability across subjects that related to pre-reading ability approximately a year later. Our results suggest the co-development of grey and white matter brain structures in early life predicts future pre-reading capabilities in preschool children.
This abstract and the presentation materials are available to members only; a login is required.