In conventional compressed sensing (CS) multi-slice Cartesian 2D imaging, the undersampling is performed along phase-encoding direction only, leading to coherent 1D aliasing that significantly limits the effectivess of CS for acceleration. This study proposes a multi-slice CS reconstruction method to take advantage of extremely augmented sampling incoherence created by orthogonally alternating phase-encoding directions among adjacent slices. The multi-slice CS approach was evaluated with single-channel brain T1W and T2W datasets. The results demonstrate significant improvements with both pseudo-random and uniform undersampling. This new method will also greatly augment the existing 2D CS parallel imaging technqiues for very high acceleration.
This abstract and the presentation materials are available to members only; a login is required.