Magnetic resonance fingerprinting (MRF) is a useful tool for simultaneously obtaining multiple tissue-specific parameters in an efficient imaging experiment. This technique uses transient state acquisitions with pseudo-random acquisition parameters. However, specific schedules may be better suited for certain parameter ranges or sampling patterns. This work aims to introduce a framework for pulse sequence optimization, including aliasing and noise in our estimates, individually or jointly optimizing for T1 and T2 relaxation times. We demonstrated the schedules created by our algorithm using MRI acquisitions on a healthy volunteer. The design framework could improve the efficiency and accuracy of T1 and T2 acquisitions.
This abstract and the presentation materials are available to members only; a login is required.