Data sampling for pulmonary function measurements using hyperpolarized gas MRI typically lasts for several seconds due to the time requirements for spatial signal encoding. Consequently, highly-dynamic processes are largely invisible to existing lung-imaging techniques. In an initial attempt to observe pulmonary function in real time, we traded spatial resolution for a high temporal resolution of 10 ms by limiting spatial information to 1D projection acquisitions. We tested the technique in a rabbit model by observing pulmonary signal oscillations throughout the lung and by detecting alveolar collapse during expiration at high PEEP in acid-induced acute lung injury.
This abstract and the presentation materials are available to members only; a login is required.