Glycogen is abundant in different tissues and plays a central role in glucose homeostasis. We propose a new method for imaging glycogen using the nuclear Overhauser enhancement (NOE) between glycogen and water. We mapped the glycogen NOE signal in the Z-spectral range around -1 ppm from water, both in phantoms and in mouse liver in vivo. For validation, we performed a fasting protocol and glucagon infusions. Glycogen levels were greatly reduced after 24 hours fasting and after the intraperitoneal injection of glucagon (100 ml, 1mg/ml). This glycoNOE MRI has the potential for non-invasive imaging of liver glycogen levels in vivo.
This abstract and the presentation materials are available to members only; a login is required.