The measurement of sodium concentration in cartilage, skin, and muscle with 23Na MRI requires the knowledge and minimization of spin 3/2-related signal losses. Here, a common B1 mapping experiment is used here to show that greater than prescribed flip-angles are produced in healthy human cartilage, skin, and muscle and that this effect is increased with longer RF excitation pulses. This points to the presence of residual quadrupole interactions in these tissues. To avoid the concomitant signal loss associated with residual quadrupole interactions, very hard (short) RF excitation pulses may be required.
This abstract and the presentation materials are available to members only; a login is required.