Synopsis
Hyperpolarization of metabolites is a promising approach for in vivo disease detection and observation of treatment responses.1-4 Among hyperpolarization techniques, para-hydrogen induced polarization (PHIP) represents an inexpensive approach to generate polarization within a few seconds.5-11 Here, we are introducing a pulsed magnetic resonance method to polarize metabolites that enables us to efficiently transfer proton polarization to a 13C nucleus of interest. This becomes especially possible by attaching an optimized molecular sidearm to a metabolite of choice (here: acetate, glycine and pyruvate) which is para-hydrogenated and the polarization subsequently transferred. We have achieved high levels of metabolite precursor polarization (P >10%) with para-hydrogen within 15 seconds. Cleavage of the sidearm yields hyperpolarized metabolites.This abstract and the presentation materials are available to members only; a login is required.