The high energy requirements of the brain are sustained by a unique metabolic relationship between astrocytes and neurons. Here, we show how cocaine administration shifts neurometabolism at a fundamental level. Using a novel approach combining dynamic nuclear polarization-enabled metabolic flux measurements with steady state magnetic resonance measures of metabolite pools, we reveal acute cocaine administration disrupts the balance of oxidative and non-oxidative metabolic pathways. These results demonstrate significant metabolic shifts in response to cocaine administration, providing insight into the observed short-term effects of cocaine use.
This abstract and the presentation materials are available to members only; a login is required.