Detecting early brain changes in neurodegenerative diseases such as Alzheimer’s disease (AD) is essential for enabling interventions. We thus need to increase our ability to accurately localize areas that change, and to quantifying changes. The temporal lobe is essential for memory function. This is where AD hallmarks such as plaques, tangles, and neuronal death happen first. White matter has been proposed to have a role in early AD. We use high resolution magnetic resonance histology and diffusion tensor imaging to characterize the temporal lobe and its tracts. A compressed sensing acquisition with cluster based reconstruction increased efficiency four-fold.
This abstract and the presentation materials are available to members only; a login is required.