Meeting Banner
Abstract #3541

Evaluation of Heterogeneous Metabolic Profile in an Orthotopic Human Glioblastoma Xenograft Model using 3D Compressed Sensing Hyperpolarized 13C MRSI

Ilwoo Park1, Simon Hu1, Robert Bok1, Peter Shin1, Tomoko Ozawa2, C. David James2, Sabrina M. Ronen1, Daniel B. Vigneron1,3, Sarah J. Nelson1,3

1Surbeck Laboratory of Advanced Imaging, Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States; 2Brain Tumor Research Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States; 3Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States


We modified a previous compressed sensing scheme and acquired hyperpolarized 13C 3D MRSI data from an orthotopic human xenograft tumor model in rat brain. The 3.72-fold acceleration factor allowed the reliable acquisition of hyperpolarized 13C 3D MRSI data with 4 times better resolution in approximately the same scan time compared to the fully sampled data. The new sequence was applied to evaluate heterogeneous metabolic profiles within the tumor tissue of rats with brain cancer. The results from this study suggest that this technique may be used to differentiate brain tissue with different tumor histology.