Meeting Banner
Abstract #2264

Reduction in CSF Pulsatility with Altered Intracranial Compliance by Craniectomy in Communicating Hydrocephalus

Shams Rashid1, James P. McAllister2, Martin Schuhmann3, Mark Wagshul4

1Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States; 2Primary Children's Medical Center, University of Utah, Salt Lake City, UT, United States; 3Klinik fr Neurochirurgie, Eberhard Karls Universitt, Tbingen, Germany; 4Gruss MRRC, Albert Einstein College of Medicine, Bronx, NY, United States


Communicating hydrocephalus (CH) is characterized by elevated CSF aqueductal pulsations, and is thought to be caused by reduced intracranial compliance. This study investigates the effect of increasing intracranial compliance by decompressive craniectomy on CSF pulsatility in CH. CH is induced in rats by kaolin injection. Animals are subjected to craniectomy two weeks post induction. CSF pulsatility, measured by a cardiac gated phase contrast MR sequence, is found to decrease after craniectomy. This shows that intracranial compliance is linked to CSF pulsatility, and may play a key role in the development of CH.