Meeting Banner
Abstract #4198

Hollow Structured Mesoporous Silica Coated MnO Nanoparticles as Highly Efficient T1 Contrast Agents and Their Applications in MR Tracking of Transplanted Mesenchymal Stem Cells

Taeho Kim1,2, Eric Momin3, Jonghoon Choi1,4, Hasan Zaidi3, Jaeyun Kim1,2, Mihyun Park2, Michael T. McMahon1,5, Taeghwan Hyeon2, Alfredo Quinones-Hinojosa3, Jeff W. M. Bulte1, Assaf A. Gilad1

1Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; 2Chemical & Biological Engineering, Seoul National University, Seoul, Korea, Republic of; 3Department of Neurological Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; 4CSTL, National Institute of Standards and Technology, Gaithersburg, MD, United States; 5F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States


New MnO nanoparticles, which have "hollow" structures in a mesoporous silica coating were designed and successfully synthesized. We have demonstrated improved T1 and T2 contrast with these nanoparticles. These nanoparticles showed high cellular uptake with the use of electroporation and were detected with magnetic resonance imaging (MRI) both in vivo and in vitro. Thus, these novel MnO nanoparticles represent an efficient alternative to label and track transplanted cells with MRI.