Meeting Banner
Abstract #0456

A Novel Concept for Motion Suppression Applied to Free-Breathing 3D Whole-Heart Coronary MRA: Respiratory Motion-Resolved Reconstruction

Davide Piccini1,2, Li Feng3, Gabriele Bonanno2, Simone Coppo2, Jérôme Yerly2,4, Ruth P. Lim5, Juerg Schwitter6, Daniel K. Sodickson3, Ricardo Otazo3, and Matthias Stuber2,4

1Advanced Clinical Imaging Technology, Siemens Healthcare, Lausanne, Switzerland, 2Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland, 3Center for Advanced Imaging Innovation and Research, New York University School of Medicine, New York City, NY, United States, 4Center for Biomedical Imaging (CIBM), Lausanne, Switzerland, 5Department of Radiology, Austin Health and The University of Melbourne, Melbourne, Australia, 6Division of Cardiology and Cardiac MR Center, University Hospital of Lausanne (CHUV), Lausanne, Switzerland

We hypothesize that sparse reconstruction algorithms can be exploited to reconstruct respiratory motion-resolved 3D MRA images of the heart without the need for breath-holding, navigators, or self-navigated respiratory motion correction. Phantom, volunteer, and patient acquisitions were performed and image quality was compared to 1D self-navigation for vessel sharpness, length and diagnostic quality. Respiratory motion-resolved reconstruction effectively suppresses respiratory motion artifacts with superior results with respect to self-navigation. Instead of discarding data or enforcing motion models for motion correction, motion-resolved reconstruction makes constructive use of all respiratory phases to improve image quality, and may lead coronary MRA closer to clinical practice.

This abstract and the presentation materials are available to members only; a login is required.

Join Here