Joseph Y. Cheng1, Tao Zhang1, Marcus T. Alley1, Michael Lustig2, John M. Pauly3, and Shreyas S. Vasanawala1
1Radiology, Stanford University, Stanford, CA, United States, 2Electrical Engineering & Computer Sciences, University of California, Berkeley, CA, United States, 3Electrical Engineering, Stanford University, Stanford, CA, United States
Volumetric cardiac-resolved flow imaging (4D flow) can enable the assessment of flow, function, and anatomy from a single sequence. Here, 4D flow is extended to higher dimensional space as N-D flow. By resolving different dynamics such as respiration or contrast enhancement, more diagnostic information can be extracted for a single-sequence protocol. Furthermore, this potentially improves image quality and quantification accuracy. N-D flow is enabled by a compressed-sensing and parallel imaging based acquisition and reconstruction. The feasibility of this approach is demonstrated for pediatric imaging.
This abstract and the presentation materials are available to members only;
a login is required.