This study proposes non-invasive Gleason Score (GS) classification for prostate cancer with VERDICT-MRI using convolutional neural networks (CNNs). We evaluate GS classification using parametric maps from the VERDICT prostate model with compensated relaxation. We classify lesions using two CNN architectures: DenseNet and SE-ResNet. Results show that VERDICT achieves high GS classification performance using SE-ResNet with all parametric maps as input. Also in comparison with published GS classification multi-parametric MRI studies, VERDICT maps achieve higher metrics.
This abstract and the presentation materials are available to members only; a login is required.