Advances in hyperpolarization (HP) technology have expanded the translation and clinical utility of HP media MR. Unfortunately, HP images suffer from artifacts and inaccuracies due to magnetization decay. To mitigate decay, we introduced a method to map magnetization dynamics via Bloch-equation modeling and keyhole reconstruction. Here we extend the approach to include optimization via uncertainty propagation. As proof-of-principle, we compared a linear and interleaved keyhole to map HP decay in digital phantoms and 129Xe ventilation images. Linear keyhole yielded uniform decay values, while interleaved keyhole generated physically improbable distributions, demonstrating the utility of analytical optimization in radial-keyhole decay correction.
This abstract and the presentation materials are available to members only; a login is required.