Applying deep learning models to MRI scans of acute stroke patients to extract features that are indicative of short-term outcome could assist a clinician’s treatment decisions. Deep learning models are usually accurate but are not easily interpretable. Here, we trained a convolutional neural network on ADC maps from hyperacute ischaemic stroke patients for prediction of short-term functional outcome and used an interpretability technique to highlight regions in the ADC maps that were most important in the prediction of a bad outcome. Although highly accurate, the model’s predictions were not based on aspects of the ADC maps related to stroke pathophysiology.
This abstract and the presentation materials are available to members only; a login is required.