For a holistic understanding of sleep, arousal and associated motor processes, we investigated the resting-state functional connectivity of 18 arousal and motor brainstem nuclei in living humans by the use of high spatial-resolution 7 Tesla resting-state fMRI, as well as a recently developed in-vivo probabilistic atlas of these nuclei in standard space. Further, we verified the translatability of our brainstem connectome approach to conventional (e.g. 3 Tesla) fMRI. Results provided comprehensive and augmented brainstem-brain connectome to understand mechanisms of arousal-motor function in health and disease conditions and its translatability in clinical settings.
This abstract and the presentation materials are available to members only; a login is required.