The inhomogeneous B1 excitation profile of 13C surface transmit/receive coils provides high SNR near the surface, but results in a spatially-varying B1+. For accurately quantifying the pyruvate to lactate conversion rate (kPL), the flip angle needs to be corrected based on the B1 excitation profile. Simultaneously, random noise in hyperpolarized spectral data obscures peaks of downstream metabolites. In this work, we developed and tested a specialized computational pipeline incorporating denoising and a B1 excitation field correction method that improved quantitative kinetic rate analyses of hyperpolarized 13C MRSI scans of liver tumor patients acquired with a T/R 13C surface coil.
This abstract and the presentation materials are available to members only; a login is required.