In previous work, CAIPIRINHA was implemented in multi-echo gradient and spin echo (GRASE) acquisitions for 3D myelin water imaging, achieving significant acceleration. However, residual undersampling artifacts prevented further acquisition time reduction. In this work, we propose a joint-CAIPI reconstruction across echoes of GRASE k-space data to remove aliasing artifacts and further accelerate the acquisition. Exploiting the redundant anatomical information across the different GRASE echoes helped mitigate aliasing artifacts in myelin water fraction maps and provided an additional ~40% reduction in scan time to 6:18$$$\,$$$minutes for a whole-brain acquisition at 1.6$$$\,$$$mm3 isotropic resolution.
This abstract and the presentation materials are available to members only; a login is required.