Meeting Banner
Abstract #2725

Whole-brain Perfusion Mapping at 7T by SAR-efficient Non-segmented 3D EPI-pCASL

Seon-Ha Hwang1, SoHyun Han2, Seong-Gi Kim2, Jaeseok Park3,4, and Sung-Hong Park1
1Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea, Republic of, 2Center for Neuroscience Imaging Research, Institute of Basic Science, Suwon, Korea, Republic of, 3Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Korea, Republic of, 4Department of Intelligent Precision Healthcare Convergence, Suwon, Korea, Republic of

Due to high specific absorption rate (SAR), it has not been easy to apply pseudo-continuous arterial spin labeling (pCASL) at 7T human MRI, especially with 3D readouts. In this study, non-segmented 3D-EPI-pCASL is proposed for whole-brain perfusion mapping. SAR was reduced by multiple low-flip-angle water-excitation rectangular RF pulses for 3D EPI. The proposed 3D-EPI-pCASL produced consistent perfusion maps at both 3T and 7T compared to 2D-EPI-pCASL which was available only at 3T because of SAR. The high temporal resolution of the proposed non-segmented 3D-EPI-pCASL enabled us to get a whole-brain 3D pCASL fMRI map at 7T for the first time.

This abstract and the presentation materials are available to members only; a login is required.

Join Here