Conventionally in MRI, respiratory motion leads to shifts of tissue position in the image domain that correspond to linear phase errors in the k-space domain. For DENSE, in addition to position shifts, respiratory motion is displacement-encoded in the stimulated echo, leading to a constant phase error in the k-space domain. We show that in segmented DENSE acquisitions, motion compensation can be applied using per-segment linear and constant phase corrections. As constant phase corrections using image-based navigators are challenging, we show that deep leaning is potentially an effective solution using simulated training data.
This abstract and the presentation materials are available to members only; a login is required.