This study aims to tackle the structural MRI (T1) data harmonization problem by presenting a novel multi-site T1 data harmonization, which uses the CycleGAN network with segmentation loss (CycleGANs). CycleGANs aims to learn an efficient mapping of T1 data across scanners from the same set of subjects while simultaneously learning the mapping of free surfer parcellations. We demonstrated the efficacy of the method with the Dice overlap scores between FreeSurfer parcellations across two datasets before and after harmonization.
This abstract and the presentation materials are available to members only; a login is required.