Tissue water content is highly regulated in the healthy brain, and even small changes are indicative of pathology. It also constitutes an important source of anatomic MRI contrast. However, this contrast remains insufficiently explored, partly due to lengthy measurement times and relatively low resolution. Super-resolution reconstruction techniques offer a trade-off between resolution, scan time and SNR.The goal of this work was to develop a technique to achieve high resolution, whole-brain water content maps by employing super-resolution reconstruction techniques. Results from the developed technique were evaluated with a carrageenan phantom and whole-brain water content maps acquired from a healthy volunteer.
This abstract and the presentation materials are available to members only; a login is required.