Subject motion in parallel-transmit (pTx) causes channels’ electric field interference patterns to change, influencing SAR distributions. This can cause safety limits to be exceeded when SAR-constrained pulses are designed for one position. Here, we consider effects of pTx coil dimensions on SAR sensitivity to motion by simulating 6 differently-sized coil models, and evaluating SAR at 19 displaced positions. Our results agree with those previously reported for the similar-sized coil, but SAR sensitivity was generally lower for larger coils, and higher for smaller coils, with maximum motion-induced local-SAR increase of 3.8-fold and 1.6-fold for the smallest and largest coil models, respectively.
This abstract and the presentation materials are available to members only; a login is required.