Compressed Sensing (CS) is a popular reconstruction technique supporting 4D-flow MRI acquisitions. Many literature studied the velocity changes after CS simplifying the velocity vector field into a scalar field along the time domain. The aim of our investigation was to assess how CS influences reconstructed velocity vector fields in space. Our results showed that CS underestimated the maximum velocity values, broadened the full-width-at-half-maximum of the velocity profiles, and preserved the directional information of the velocity vector fields compared to L2-ESPIRiT. The results of CS were in agreement for differently undersampled data, while the L2-ESPIRiT reconstruction provided differing outputs.
This abstract and the presentation materials are available to members only; a login is required.