A machine learning based reconstruction framework for Echo Planar Time-resolved Imaging(EPTI) is proposed. This work utilized the special data acquisition trajectory of EPTI, a highly-accelerated spatiotemporal CAIPI sampling, to divide the k-space recovery task into a multi-process program. The missing data is filled within an indicated small kernel with a fully connected neural network. Through image reconstruction tests on human brain data set acquired by EPTI, we demonstrated the high efficiency of this algorithm by shortening the reconstruction time of 216×216×48×32 k-data from over 10 minutes to about 20 seconds.
This abstract and the presentation materials are available to members only; a login is required.