Deep learning (DL) has shown promise for faster, high quality accelerated MRI reconstruction. However, standard supervised DL methods depend on extensive amounts of fully-sampled, ground-truth data and are sensitive to out-of-distribution (OOD), particularly low-SNR, data. In this work, we propose a semi-supervised, consistency-based framework (termed Noise2Recon) for joint MR reconstruction and denoising that uses a limited number of fully-sampled references. Results demonstrate that even with minimal ground-truth data, Noise2Recon can use unsupervised, undersampled data to 1) achieve high performance on in-distribution (noise-free) scans and 2) improve generalizability to noisy, OOD scans compared to both standard and augmentation-based supervised methods.
This abstract and the presentation materials are available to members only; a login is required.