Dipole antennas can be used in multi-channel loop/dipole arrays to boost the signal-to-noise ratio in MRI at 7T (f=300MHz). For this purpose, dipole antennas need to be physically shorter. In this work we conducted electromagnetic field simulations and phantom experiments at 7T to compare the performance of an inductively-shortened dipole antenna with a dielectrically-shortened dipole antenna in a loop/dipole combination. We evaluated the performance of both designs in different loading conditions and we found that the dielectrically-shortened dipole antenna performed in a very robust manner providing apparent receive field gains when compared with its inductively-shortened counterpart.
This abstract and the presentation materials are available to members only; a login is required.