Recently, there has been a growing interest in developing distortion-free EPI acquisitions for high-fidelity diffusion, relaxometry and/or functional MRI. Point spread function (PSF)-based techniques have been proposed for distortion-free diffusion imaging. Another technique, echo-planar time resolved imaging (EPTI), has been demonstrated for distortion-free relaxometry with an EPI readout. Additionally, a combination of PROPELLER and EPTI has been reported for motion-robust simultaneous diffusion and relaxometry imaging. In this study, we develop a self-navigated Cartesian-based EPTI (cEPTI) acquisition for distortion-free diffusion-relaxometry imaging. In vivo human brain data demonstrate that high-quality distortion-free diffusion and relaxometry images can be acquired with the proposed cEPTI.
This abstract and the presentation materials are available to members only; a login is required.