Equipping the existing parallel imaging methods such as ESPIRiT and SPIRiT with a full field-of-view (FOV) calibration could resolve the fold-over artefacts induced by reducing the imaging FOV to be smaller than the object size. Full-FOV images could be reconstructed by accurately resolving the aliased components in image space, or by reconstructing the kspace at a finer sampling interval corresponding to full-FOV. Both approaches requires a separate full-FOV calibration data which could be acquired efficiently. Reduced FOV Parallel imaging methods with full-FOV calibration may provide an alternative approach to treat the common FOV aliasing problem in practice.
This abstract and the presentation materials are available to members only; a login is required.