We have developed and validated an ultra-quality 4D-MRI synthesis technique using deep learning-based deformable image registrations. The displacement vector fields between breathing frames were obtained from low-quality 4D-MRI. They were then applied to high-quality stationary T1, T2, and diffusion weighted images to generate ultra-quality 4D-MRI. The synthetic 4D-MRIs were verified in terms of tumor motion accuracy and image quality. All the motion errors were in a sub-voxel level, and the image quality was significantly improved. This technique holds great potential in volumetric tumor tracking with high accuracy.
This abstract and the presentation materials are available to members only; a login is required.