The proposed approach, BJORK, provides a robust and generalizable workflow to jointly optimize non-Cartesian sampling patterns and a physics-informed reconstruction. Several approaches, including re-parameterization of trajectories, multi-level optimization, and non-Cartesian unrolled neural networks, are introduced to improve training effect and avoid sub-optimal local minima. The in-vivo experiments show that the networks and trajectories learned on simulation dataset are transferable to the real acquisition even with different parameter-weighted MRI contrasts and noise-levels, and demonstrate improved image quality compared with previous learning-based and model-based trajectory optimization methods.
This abstract and the presentation materials are available to members only; a login is required.