Radial imaging is becoming increasingly popular due to its ability to support highly accelerated imaging. However, it is plagued by streak artifacts that often arise from undersampling which can lead to poor image quality. The problem is particularly acute in time resolved imaging where the need for high spatio-temporal sampling usually leads to large amount of streaks. In this work, we propose a method for separate spatial and temporal deep learning for streak artifact reduction. The utility of the method is demonstrated on free breathing time resolved volumetric DCE MRI acquired using the stack-of-stars trajectory.
This abstract and the presentation materials are available to members only; a login is required.