A fully automated pipeline using four convolutional neural networks was designed to perform analysis of aortic 4D flow MRI, including preprocessing (eddy current correction, noise masking, and antialiasing), 3D segmentation of the aorta, quantification of mean flow-time curves and peak velocities. The analysis pipeline was run on a total of 2084 4D flow MRI studies and compared against manual analysis in a subset of 69 studies. Median segmentation Dice score for the ascending aorta was 0.93 [0.90 – 0.95]. Pipeline-based quantification of ascending aortic peak velocities demonstrated bias of -0.05 m/s versus manual analysis [LOA: -0.26 to 0.15 m/s].
This abstract and the presentation materials are available to members only; a login is required.