Implantation of the left ventricular pacing lead at the area with delayed activation is critical to Cardiac Resynchronization Therapy (CRT) response. Current approaches of detecting late-activated regions of left ventricles (LV) are slow with unsatisfied accuracy, particularly in cases where scar tissues exist in the patient’s heart. This work presents a multi-task deep learning algorithm to automatically identify late-activated regions of LV, as well as estimating the Time to the Onset of circumferential Shortening (TOS) using spatio-temporal cardiac DENSE MR images. Experimental results show that our algorithm provides ultra-fast identification of late-activated regions and estimated TOS with increased accuracy.
This abstract and the presentation materials are available to members only; a login is required.