This study aimed to evaluate the effect of respiratory motion on disc MRS and propose an MRS-method that improves the signal-to-noise-ratio. Findings showed that the phase signal of the disc changes substantially between expiration and inspiration. With the proposed postprocessing method, all spectra gave a higher signal-to-noise-ratio (largest gain=30%). Present study shows that respiratory motion affects the disc phase signal and should be taken into consideration when evaluating the disc using MRS. The proposed method improved the quality of the MRS-spectrum and, thus, showed feasibility in measuring the molecular disc content non-invasively during normal breathing.
This abstract and the presentation materials are available to members only; a login is required.