We propose a framework for learning the sampling pattern in MRI jointly with reconstruction in a data-driven manner using variational information maximization. We enable optimization of k-space samples via continuous parametrization of the sampling coordinates in the non-uniform FFT operator. Experiments with knee MRI shows improved reconstruction quality of our data-driven sampling over the prevailing variable-density sampling, highlighting possible benefits that can be obtained by learning data sampling patterns.
This abstract and the presentation materials are available to members only; a login is required.