Meeting Banner
Abstract #0116

Simultaneous Multiple Resonance Frequency Imaging (SMURF): Fat‑water imaging using multi‑band principles

Beata Bachrata1,2, Bernhard Strasser1,3, Wolfgang Bogner1, Albrecht Ingo Schmid4, Radim Korinek5, Martin Krššák1,2,6, Siegfried Trattnig1,2, and Simon Daniel Robinson1,7,8
1High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria, 2Karl Landsteiner Institute for Clinical Molecular MR in Musculoskeletal Imaging, Vienna, Austria, 3Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States, 4High Field MR Centre, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria, 5Institute of Scientific Instruments of the CAS, Brno, Czech Republic, 6Department of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria, 7Centre of Advanced Imaging, University of Queensland, St. Lucia, Australia, 8Department of Neurology, Medical University of Graz, Graz, Austria

Imaging of body regions containing a significant amount of fat is adversely affected by chemical shift artefacts. We propose a new fat-water imaging method that uses spectrally selective dual-band excitation and CAIPIRINHA to generate separate images of fat and water simultaneously as well as chemical shift-corrected, recombined fat-water images. Gradient-echo and turbo spin-echo variants of this Simultaneous Multiple Resonance Frequency Imaging (SMURF) approach yielded fat-water separation which was similar to or better than state-of-the-art techniques in the knee, breasts and abdomen and generated recombined fat-water images in which chemical shift effects were fully eliminated.

This abstract and the presentation materials are available to members only; a login is required.

Join Here