Quantitative imaging is the key to developing reliable and reproducible imaging methods for standardized diagnostic exams. Most practical T2 mapping solutions are based on the CPMG concept, using the SEMC or TSE sequence. However, several confounding variables, such as, but not limited to the B1, RF profile, refocusing flip-angle, choice of TEs, and the imaging noise/artifacts, can lead to distorted signal and inaccurate T2 quantification. In this work, we investigated some of these confounders in CPMG-based T2 quantification and proposed a new model and fitting methods to improve the reliability, reproducibility of in-vivo T2 quantification.
This abstract and the presentation materials are available to members only; a login is required.