Fast, accurate, and automatic thalamus segmentation is critical in evaluating the roles of individual thalamic nuclei in pathology and treatment. Many segmentation techniques developed to date involve the use of Diffusion Tensor MRI and are inhibited by their reliance upon i) time-consuming processing to produce an initial mask for the entire thalamus, and ii) orientation distribution functions incapable of modeling intricate small-scale fiber tract geometries. We present a technique that addresses these issues by i) greatly accelerating the masking process via template-based registration, and ii) using constrained spherical deconvolution to produce enhanced ODFs that drive a modified k-means clustering algorithm.
This abstract and the presentation materials are available to members only; a login is required.