Deep learning methods have demonstrated great potential in image reconstruction due to its ability to learn the non-linearity relationship between the undersampled k-space data and the corresponding desired image. Among these methods, Generative Adversarial Networks (GANs) is known to reconstruct images that are sharper and more realistic-looking. In this abstract, we study whether an MR-specific feature map that is trained on a large number of MRI images and used in the loss function can improve the GAN-based reconstruction. We demonstrate that the MR-specific feature map is superior to the pre-trained feature map typically used for GAN-based reconstruction.
This abstract and the presentation materials are available to members only; a login is required.