The application of quantitative MRI is limited by additional data acquisition for variable contrast images. Leveraging from the unique ability of deep learning, we propose a data-driven strategy to derive quantitative T1 map and proton density map from a single qualitative MR image without specific requirements on the weighting of the input image. The quantitative parametric mapping tasks are accomplished using self-attention deep convolutional neural networks, which make efficient use of local and non-local information. In this way, qualitative and quantitative MRI can be attained simultaneously without changing the existing imaging protocol.
This abstract and the presentation materials are available to members only; a login is required.