Real –time MR image-guided neurosurgery could greatly improve the surgery accuracy and outcome. However, real-time guidance requires highly accelerated imaging. In this study, we proposed a Convolutional Long Short-term Memory (Conv-LSTM) based U-net to reconstruct consecutive image frames with golden-angle sampling. The Conv-LSTM based architecture was developed to explore time coherence information. Training and test datasets were generated from MR images of patients treated with Deep Brain Stimulation (DBS). Results showed that our model could achieve an acceleration rate ~80x, which provided great potentials for application in MR-guided interventional therapy.
This abstract and the presentation materials are available to members only; a login is required.