There are two major challenges in MRF reconstruction, the aliasing artifacts that results from the largely under-sampled k-space, and the very long MRF sequence used in practice to improve the reconstruction accuracy. In this study, we propose an end-to-end deep learning based reconstruction model that aims to address the issue of the spatial aliasing artifacts and provide accurate reconstruction with ultra-short MRF signals.
This abstract and the presentation materials are available to members only; a login is required.